首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9226篇
  免费   1061篇
  国内免费   1005篇
电工技术   465篇
综合类   814篇
化学工业   1511篇
金属工艺   755篇
机械仪表   103篇
建筑科学   1386篇
矿业工程   463篇
能源动力   410篇
轻工业   459篇
水利工程   1979篇
石油天然气   396篇
武器工业   18篇
无线电   841篇
一般工业技术   1026篇
冶金工业   148篇
原子能技术   262篇
自动化技术   256篇
  2024年   27篇
  2023年   257篇
  2022年   317篇
  2021年   425篇
  2020年   380篇
  2019年   387篇
  2018年   328篇
  2017年   392篇
  2016年   402篇
  2015年   353篇
  2014年   495篇
  2013年   569篇
  2012年   614篇
  2011年   682篇
  2010年   521篇
  2009年   579篇
  2008年   507篇
  2007年   547篇
  2006年   520篇
  2005年   483篇
  2004年   464篇
  2003年   371篇
  2002年   330篇
  2001年   292篇
  2000年   228篇
  1999年   174篇
  1998年   117篇
  1997年   110篇
  1996年   84篇
  1995年   71篇
  1994年   55篇
  1993年   56篇
  1992年   32篇
  1991年   25篇
  1990年   23篇
  1989年   21篇
  1988年   13篇
  1987年   8篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1965年   1篇
  1960年   1篇
  1959年   2篇
  1958年   1篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
11.
《Ceramics International》2022,48(18):26206-26216
Mixed oxide (MO) with localized growth feature and high growth rate remarkably affects the lifetime of thermal barrier coatings (TBCs), which indicates that clarifying the ceramic cracking mechanism induced by MO is critical for developing new coatings with high durability. Two kinds of TBC models involving spherical and layered mixed oxides are created to explore the influence of MO growth on the local stress state and crack evolution during thermal cycle. The growth of α-Al2O3 is also included in the model. The undulating interface between ceramic coat and bond coat is approximated using a cosine curve. Dynamic ceramic cracking is realized by a surface-based cohesive interaction. The ceramic delamination by simulation agrees with the experimental observation. The effects of MO coverage ratio and growth rate on the TBC failure are also discussed. The results show that the MO growth causes the local ceramic coat to bear the normal tensile stress. The failure mode of coating is turned from α-Al2O3 thickness control to MO growth control. Once the mixed oxide appears, local ceramic cracking is easy to occur. When multiple cracks connect, ceramic delamination happens. Suppressing MO formation or decreasing MO growth can evidently improve the coating durability. These results in this work can provide important theoretical guidance for the development of anti-cracking TBCs.  相似文献   
12.
Carbon dioxide (CO2) and methane (CH4) are the primary greenhouse gases (GHGs) that drive global climate change. CO2 reforming of CH4 or dry reforming of CH4 (DRM) is used for the simultaneous conversion of CO2 and CH4 into syngas and higher hydrocarbons. In this study, DRM was investigated using Ag–Ni/Al2O3 packing and Sn–Ni/Al2O3 packing in a parallel plate dielectric barrier discharge (DBD) reactor. The performance of the DBD reactor was significantly enhanced when applying Ag–Ni/Al2O3 and Sn–Ni/Al2O3 due to the relatively high electrical conductivity of Ag and Sn as well as their anti-coke performances. Using Ag–Ni/Al2O3 consisting of 1.5 wt% Ag and 5 wt% Ni/Al2O3 as the catalyst in the DBD reactor, 19% CH4 conversion, 21% CO2 conversion, 60% H2 selectivity, 81% CO selectivity, energy efficiency of 7.9% and 0.74% (by mole) coke formation were achieved. In addition, using Sn–Ni/Al2O3, consisting of 0.5 wt% Sn and 5 wt% Ni/Al2O3, 15% CH4 conversion, 19% CO2 conversion, 64% H2 selectivity, 70% CO selectivity, energy efficiency of 6.0%, and 2.1% (by mole) coke formation were achieved. Sn enhanced the reactant conversions and energy efficiency, and resulted in a reduction in coke formation; these results are comparable to that achieved when using the noble metal Ag. The decrease in the formation of coke could be correlated to the increase in the CO selectivity of the catalyst. Good dispersion of the secondary metals on Ni was found to be an important factor for the observed increases in the catalyst surface area and catalytic activities. Furthermore, the stability of the catalytic reactions was investigated for 1800 min over the 0.5 wt% Ag-5 wt% Ni/Al2O3 and 0.5 wt% Sn-5 wt% Ni/Al2O3 catalysts. The results showed an increase in the reactant conversions with an increase in the reaction time.  相似文献   
13.
Barrier dysfunction of airway epithelium contributes to the development of allergies, airway hyper-responsiveness and immunological respiratory diseases. Short-chain fatty acids (SCFA) enhance and restore the barrier function of the intestinal epithelium. This study investigated whether acetate, propionate and butyrate enhance the integrity of bronchial epithelial cells. Differentiating human bronchial epithelial cells (16HBE) grown on transwells were exposed to butyrate, propionate and acetate while trans-epithelial electrical resistance was monitored over time. Restorative effects of SCFA were investigated by subsequent incubation of cells with IL-4, IL-13 or house dust mite extract and SCFA. SCFA effects on IL-4-induced cytokine production and the expression of zonula occludens-1 (ZO-1) and Mitogen-activated protein kinases (MAPK) signalling pathways were investigated by ELISA and Western blot assays. Propionate and butyrate enhanced the barrier function of differentiating 16HBE cells and induced complete recovery of the barrier function after exposure to the above-mentioned stimuli. Butyrate decreased IL-4-induced IL-6 production. IL-4 decreased ZO-1 protein expression and induced phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK) in 16HBE cells, both of which could be restored by SCFA. SCFA showed prophylactic and restorative effects on airway epithelial barrier function, which might be induced by increased ZO-1 expression.  相似文献   
14.
The deposition of amyloid-beta (Aβ) through the cleavage of amyloid-beta precursor protein (APP) is a biomarker of Alzheimer’s disease (AD). This study used QIAGEN Ingenuity Pathway Analysis (IPA) to conduct meta-analysis on the molecular mechanisms by which methamphetamine (METH) impacts AD through modulating the expression of APP. All the molecules affected by METH and APP were collected from the QIAGEN Knowledge Base (QKB); 78 overlapping molecules were identified. Upon simulation of METH exposure using the “Molecule Activity Predictor” feature, eight molecules were found to be affected by METH and exhibited activation relationships on APP expression at a confidence of p = 0.000453 (Z-score = 3.51, two-tailed). Core Analysis of these eight molecules identified High Mobility Group Box protein 1 (HMGB1) signaling pathway among the top 5 canonical pathways with most overlap with the 8-molecule dataset. Simulated METH exposure increased APP expression through HMGB1 at a confidence of p < 0.00001 (Z-score = 7.64, two-tailed). HMGB1 is a pathogenic hallmark in AD progression. It not only increases the production of inflammatory mediators, but also mediates the disruption of the blood-brain barrier. Our analyses suggest the involvement of HMGB1 signaling pathway in METH-induced modulation of APP as a potential casual factor of AD.  相似文献   
15.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   
16.
《Ceramics International》2021,47(24):34361-34379
This paper aimed to design and optimize the structure of a thick thermal barrier coating by adding graded layers to achieve a balance between high thermal insulation capacity and durability. To this end, conventional TBC, conventional TTBC, and functionally graded TTBCs were deposited on the superalloy substrate by air plasma spraying. To determine the quality of the bond strength of the coatings, the bonding strength was measured. The durability of coatings was evaluated by isothermal oxidation and thermal shock tests. Then, at a temperature of 1000 °C, the thermal insulation capacity of the coatings was carried out. The microstructure of the coatings was characterized by a scanning electron microscope. The results showed that the thickness of the TGO layer formed on the bond coat in the conventional TBC and TTBC under the oxidation test at 1000 °C after 150 h was 2.79 and 2.11 μm, respectively, whereas, in the functionally graded TTBC samples, no continuous TGO layer was observed as a result of internal oxidation. The functionally graded TTBC presented higher durability than conventional TTBC due to improved bonding strength, thermal shock resistance, and the lack of a TGO layer at the bond/top coat interface. Also, the thermal insulation capacity of the functionally graded TTBC (with 1000 μm thickness of YSZ coating) was better than TTBC.  相似文献   
17.
Our aim was to investigate the subset distribution and function of circulating monocytes, proinflammatory cytokine levels, gut barrier damage, and bacterial translocation in chronic spinal cord injury (SCI) patients. Thus, 56 SCI patients and 28 healthy donors were studied. The levels of circulating CD14+highCD16, CD14+highCD16+, and CD14+lowCD16+ monocytes, membrane TLR2, TLR4, and TLR9, phagocytic activity, ROS generation, and intracytoplasmic TNF-α, IL-1, IL-6, and IL-10 after lipopolysaccharide (LPS) stimulation were analyzed by polychromatic flow cytometry. Serum TNF-α, IL-1, IL-6 and IL-10 levels were measured by Luminex and LPS-binding protein (LBP), intestinal fatty acid-binding protein (I-FABP) and zonulin by ELISA. SCI patients had normal monocyte counts and subset distribution. CD14+highCD16 and CD14+highCD16+ monocytes exhibited decreased TLR4, normal TLR2 and increased TLR9 expression. CD14+highCD16 monocytes had increased LPS-induced TNF-α but normal IL-1, IL-6, and IL-10 production. Monocytes exhibited defective phagocytosis but normal ROS production. Patients had enhanced serum TNF-α and IL-6 levels, normal IL-1 and IL-10 levels, and increased circulating LBP, I-FABP, and zonulin levels. Chronic SCI patients displayed impaired circulating monocyte function. These patients exhibited a systemic proinflammatory state characterized by enhanced serum TNF-α and IL-6 levels. These patients also had increased bacterial translocation and gut barrier damage.  相似文献   
18.
《Ceramics International》2022,48(6):7864-7875
Based on the ultrasonic C-scan results of 8YSZ coatings after thermal cycles, three-dimensional cylindrical numerical simulations of the physical geometry model of the thermal barrier coating (TBC) sinusoidal surfaces were conducted with finite elements to estimate the stress distribution and evolution law of the top coat (TC)/bond coat (BC) interface, including the centre and edge of the specimen affected by the dynamic growth of the thermally grown oxide (TGO). The results show that when a layer of TGO is grown on the TC/BC interface, compressive stress is uniformly distributed on the TGO interface, and the stress value decreases as a function of the TGO layer thickness. When the thickness of the TGO exceeds a certain value, the compressive stress of all parts of the interface gradually changes to tensile stress; meanwhile, the edges of the model affected by the crest and trough effects of the wave are reflected in the radial and circumferential directions, especially along the axial direction, with alternating concentrated tensile and compressive stresses. TGO growth imposes a minor influence on the magnitude and distributions of the radial and circumferential stresses at the BC interface. The linear elasticity, creep, fatigue, and stress accumulation effects of each layer of TBCs in each thermal cycle were fully considered in this model. The model not only interprets the crest and trough effects of the TC/BC surface interface during the growth of TGO, but also interprets the effects of the core and edge of the cylindrical model, further revealing the reason for which the core and edge of the TBC will most likely form cracks.  相似文献   
19.
In this study, high-entropy rare-earth tantalate ceramics (Y0.2Ce0.2Sm0.2Gd0.2Dy0.2)TaO4 ((5RE0.2)TaO4) have been successfully fabricated. The possibility of formation of (5RE0.2)TaO4 was verified via first-principles calculations. In addition, the phase structure, ferroelastic toughening mechanism, thermophysical, and mechanical properties were systematically investigated. The (5RE0.2)TaO4 ceramics have lower phonon thermal conductivity (1.2–2.6 W·m–1·K–1) in the entire temperature range than that of RETaO4 and YSZ. (5RE0.2)TaO4 has a higher fracture toughness and lower brittleness index than YSZ. The thermal expansion coefficients of (5RE0.2)TaO4 are as high as 10.3 × 10-6 K–1 at 1200°C and Young's modulus is 66–189 GPa, and thus, (5RE0.2)TaO4 possesses great potential for application in thermal barrier coatings (TBCs).  相似文献   
20.
《Ceramics International》2021,47(23):32641-32647
Multi-components and equimolar rare earth monosilicates, (Y1/3Dy1/3Er1/3)2SiO5, (Y1/3Dy1/3Lu1/3)2SiO5, (Y1/4Dy1/4Ho1/4Er1/4)2SiO5 and (Yb1/4Dy1/4Ho1/4Er1/4)2SiO5, were prepared by solid-state reactions and the following hot-pressing. Dense microstructures with uniform elemental distributions were obtained for all samples. These investigated multi-components monosilicates exhibit low thermal conductivities and similar coefficients of thermal expansion with SiC. Moreover, they exhibit high corrosion resistances in 1400 °C water vapor, especially, four-components (Y1/4Dy1/4Ho1/4Er1/4)2SiO5 and (Yb1/4Dy1/4Ho1/4Er1/4)2SiO5 experienced almost invariable weights after small weight losses during the initial 0.5 h. All those results indicate that multi-components rare earth monosilicates are promising candidates of environmental barrier coatings for SiC/SiC composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号